
## Etude d'un astable: formule 82

On utilise le montage de la figure 1, réalisé avec des inverseurs logiques C-MOS, dont la caractéristique est donnée figure 2.

On admet qu'une porte logique présente une impédance d'entrée infinie, que son impédance de sortie est nulle (générateur de tension parfait), et que la tension de sortie est soit à +5 volts (état haut), soit à 0 volts (état bas).

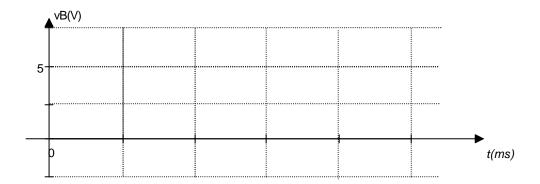




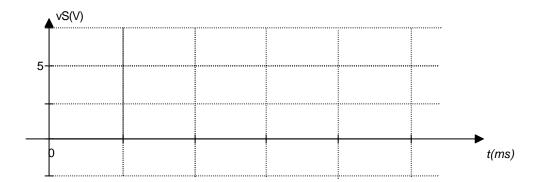
1°) A l'instant t = 0, la porte 1 commute et sa sortie passe à l'état bas. Donner, juste avant l'instant t = 0 (noté 0  $^{-}$ ), les valeurs de  $v_A$ ,  $v_B$ ,  $v_S$ ,  $v_C$ .

 $2^{\circ}$ ) Donner juste après l'instant t = 0 ( noté 0 existante entre  $v_A$ ,  $v_C$ ,  $v_S$ , en déduire  $v_A$ .

 $^{+}$ ), les valeurs de  $v_B$  et  $v_S$ . Donner la relation


3°) Le condensateur va alors se charger,  $v_S$  restant constante,  $v_A$  variable. Représenter le circuit de charge du condensateur. Montrer que  $\frac{dv_A}{dt} = -\frac{dv_C}{dt} \ .$  Montrer que l'équation différentielle qui vérifie  $v_A \text{ est: } v_A + R_4 C \frac{dv_A}{dt} = 0 \text{ dont la solution}$ est de la forme  $v_A(t) = K_1 e^{-\frac{t}{\tau}}$ .

$$\frac{dv_A}{dt} = -\frac{dv_C}{dt}.$$
v<sub>A</sub> est:  $v_A + R_4 C \frac{dv_A}{dt} = 0$  dont la solution


Vers quelle valeur va tendre  $v_A$ ?

4°) Soit t 1 le temps au bout duquel la porte 1 commute à nouveau. Donner les valeurs de  $v_B$ ,  $v_S$ ,  $v_C$  juste après l'instant t  $_1$  (noté t  $_1$ <sup>+</sup>). Représenter les graphes de  $v_A(t)$ ,  $v_B(t)$  et  $v_S(t)$ .









