
GENERATEUR D'IMPULSIONS

SYNCHRONISEES

Ce générateur se décompose en six fonctions, suivant le schéma ci dessous : (La partie horloge ne sera pas étudiée).

- La tension d'entrée v_E est sinusoïdale de période T.
- La tension de sortie v_S est définie par le chronogramme ci contre.
- T_R est le temps de retard du train d'impulsions par rapport à v_E .
- La tension de référence U_R permet de faire varier T_R dans l'intervalle : $0 \le T_R \le T/2$

Tous les amplificateurs opérationnels sont idéaux :

- Ils sont alimentés en : $\pm V_{CC}$ avec $V_{CC} = 15 \text{ V}$
- Tensions de saturation : $\pm V_{SAT}$ avec $V_{SAT} = V_{CC}$

Les diodes sont idéales (tension de seuil nulle, résistance interne nulle).

Le transistor est parfait en commutation (tension de saturation nulle).

BACCALAUREAT TECHNOLOGIQUE : Génie électronique	Session 1999		
	Durée : 4 h Coef : 5		SUJET

Les portes logiques sont du type CMOS et ont les propriétés suivantes :

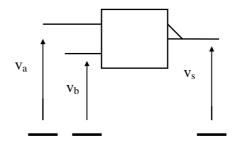
- Tension d'alimentation : $V_{DD} = V_{CC} = 15 \text{ V}$
- Pour la sortie :

Etat logique $0: v_s = 0 V$

Etat logique 1 : $v_s = V_{DD}$

• pour les entrées :

Courant nul


Etat logique $0: 0 < v_a \text{ (ou } v_b) < \frac{V_{DD}}{2}$

 $Etat\ logique\ 1: v_a\ (ou\ v_b) > \frac{V_{\tiny DD}}{2}$

- Si un changement d'état de la sortie a lieu, il se produit quand v_a (ou v_b) franchit le seuil $\frac{V_{DD}}{2}$.
- Table de vérité :

Porte NON-ET

va	v_b	ET	NON ET
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

Les parties A, B, C, D sont indépendantes.

Les feuilles réponses N°1 et N°2 sont à remettre avec la copie

Barème approximatif: A: 14 points; B: 5 points; C: 9 points; D: 7 points; E: 5 points.

A/MISE EN FORME DE V_A

Le montage est celui de la figure 1, page 7.

I/ Etude de l'étage 1.

1/ Soit $\underline{A} = \frac{\underline{V_1}}{\underline{V_E}}$ la fonction de transfert de ce filtre. Exprimer \underline{A} en fonction de R_1 , R_2 , C_2 et ω .

2/ Mettre \underline{A} sous la forme :

$$\underline{\mathbf{A}} = \mathbf{A}_0 \frac{1}{1 + \mathbf{j} \frac{\mathbf{f}}{\mathbf{f}_0}}$$

Donner l'expression de A_0 et de f_0 en fonction des éléments du montage (R_1, R_2, C_2) .

- 3/ Quelle est la définition de la fréquence de coupure à 3 dB d'un filtre ?

 Donner, sans démonstration, l'expression de la fréquence de coupure à 3 dB de ce filtre.
- 4/ Application numérique : on donne $R_1=10~k\Omega$; $A_0=$ 10 et $f_0=1{,}59~Hz.$ 4.1/ Calculer R_2 et $C_2.$
 - **4.2**/ Calculer le module et l'argument de \underline{A} pour: f = 50 Hz.
- 5/ On relève le chronogramme de v_E et celui de v_1 (oscillogramme N°1, page 9).

Les calibres sont:

pour v_E : 2 V / division ; pour v_1 : 0,5 V / division, pour la base de temps : 2 ms / division. Déterminer à partir de ces oscillogrammes :

- **5.1**/ L'amplitude et la fréquence de v_E.
- **5.2**/ L'amplitude de v_1 et son déphasage par rapport à v_E .
- **5.3**/ En déduire le module et l'argument de $\underline{A} = \frac{\underline{V_1}}{\underline{V_E}}$
- **5.4**/ Ces oscillogrammes sont-ils en accord avec l'application numérique de la question 4 ?

II/ Etude de l'étage 2 (figure 1, page 7).

- On désigne par v (ou v) la tension entre l'entrée inverseuse (ou non inverseuse) et la masse.
- Le circuit de commande du transistor T_A est tel que : si $v_E < 0$ alors T_A est saturé. si $v_E > 0$ alors T_A est bloqué.
- Les trois résistances R_A sont identiques.

1/ Exprimer \underline{V} en fonction de \underline{V}_1 et \underline{V}_A .

- 2/ On suppose que $v_E < 0$.
 - **2.1**/ Quelle est la valeur de v ⁺.
 - **2.2**/ Exprimer \underline{V}_A en fonction de \underline{V}_1 .

- 3/ On suppose maintenant que $v_E > 0$.
 - **3.1**/ Quel est la valeur de i. Quelle relation y-a-t-il entre \underline{V}_1 et \underline{V}^+ ?
 - **3.2**/ Exprimer alors \underline{V}_A en fonction de \underline{V}_1 .
- 4/ On donne le chronogramme de v_A synchronisé sur v_E (oscillogramme N°2, page 9).

Le calibre pour v_A est : 0,5 V / division v_A .

La base de temps est : 2 ms / division.

Justifier la forme ainsi que la valeur maximum de v_A à partir du résultat des questions 2 et 3 précédentes.

B/ ELABORATION DU RETARD T_R

Le schéma est celui de la figure 2.a, page 7.

1/ Quel est le fonctionnement de l'amplificateur opérationnel (justifiez votre réponse) ?

2/ On considérera comme négligeable la chute de tension dans R_D lorsque $v_2 = +V_{saat}$

Indiquer la valeur de v_2 , l'état de la diode D_1 et la valeur de v_3 dans les cas suivants :

2.1/
$$v_A > U_R$$
.

2.2/
$$v_A < U_R$$
.

3/ Tracer sur la feuille réponse $N^{\circ}1$, page 10 le chronogramme de v_2 , celui de v_3 pour les valeurs de U_R suivantes :

$$3.1/U_R = 1.5 V.$$

3.2/
$$U_R = -1.5 \text{ V}$$
.

4/ On se place dans l'intervalle $0 \le t \le T/2$. T désigne la période de v_E

Le retard T_R est défini par la durée de l'état haut de v₂.

- $\textbf{4.1/} \ Pour \ les \ deux \ valeurs \ de \ U_R \ précédentes \ ; \ déterminer \ graphiquement \ la \ valeur \ du \ retard \ T_R.$
- **4.2/** Entre quelles limites doit varier U_R pour que le retard T_R soit compris dans l'intervalle : $0 \le T_R \le T/2$

C/ ETUDE DU CIRCUIT DERIVATEUR.

Le schéma est donné **figure 2.b**, page 7.

1/ On considère le circuit RC sans la diode (figure 3, page 8).

1.1/ A l'instant t=0: v_3 passe de 0 à V_{CC} . On suppose que le condensateur C est déjà chargé sous la tension V_{CC} ($u_C(0)=+V_{CC}$). Quelle est la valeur de $v_B(0)$.

1.2/ A partir de t = 0 le condensateur se décharge. On rappelle que $i = C \frac{du_C}{dt}$.

a/ Ecrire l'équation différentielle permettant de déterminer l'expression de u_C en fonction du temps et la mettre sous la forme donnée dans le formulaire de **la page 8.** Donner l'expression de la constante de temps τ et la valeur de $U_C(\infty)$.

b/ Donner l'expression de u_C en fonction de t, τ et V_{CC} .

c/ On donne $R = 12 \text{ k}\Omega$ et C = 47 nF

- Calculer la durée T_D nécessaire pour que le condensateur soit pratiquement déchargé.
- Que vaut la tension v'_B au bout du temps T_D ?

d/ Tracer l'allure du graphe $u_C(t)$ et de $v'_B(t)$ sur la feuille réponse N°2 partie (a), page 11. On notera le temps T_D ainsi que les valeurs maxima et minima prises par $u_C(t)$ et $v'_B(t)$.

1.3/ Après la durée T_R, v₃ change d'état et prend la valeur v₃ = 0.
 a/ Quelles valeurs prennent u_C et v'_B juste après T_R?

b/ Comment va évoluer la tension u_C ? Au bout de combien de temps le système retourne-t-il à l'état de repos ? Calculer alors les valeurs atteintes par u_C et v'_B .

c/ Tracer l'allure du graphe $u_C(t)$ et de $v'_B(t)$ sur la feuille réponse $N^\circ 2$ partie (a), page 11.

2/ On revient au schéma de la figure 2.b, page 7 (circuit dérivateur avec la diode D₂).

Tracer le graphe de $v_B(t)$ sur la feuille réponse $N^{\circ}2$ partie (a). Justifiez votre réponse.

D/ ETUDE DU MONOSTABLE

Cette fonction et réalisée à partir de portes CMOS dont les propriétés sont rappelées page 2.

Le schéma est donné **figure 4, page 9** (On demande de justifier toutes les réponses.)

1/Etude de l'état stable.

- A l'état de repos $v_B = V_{DD}$.
 - **1.1**/ Quelle est la valeur de i', $u_{R'}$, v_4 et v_5 ?
 - 1.2/ Quelle est la valeur de v et celle de u'_C?

2/ Etude de l'état instable.

A l'instant $t = T_R : v_B$ passe brusquement à 0 et le monostable entre dans son état instable.

- **2.1**/ Donner à cet instant la valeur de v, celle de u'_C . En déduire : $u_{R'}$, v_4 et v_5 .
- **2.2**/ A partir de l'instant $t = T_R$ la tension $u_{R'}$ varie exponentiellement. **a**/ Pour quelle valeur de $u_{R'}$ la tension v_4 retrouvera-t-elle sa valeur initiale ?

b/ On désigne par T_i la durée de l'état instable.

- A l'aide du formulaire de la page 8, donner l'expression de T_i en fonction de R', C'.
- Sachant que $R' = 47 \text{ k}\Omega$, calculer C' pour avoir $T_i = 2 \text{ ms}$.

E/ SYNTHESE DU FONCTIONNEMENT

On applique à l'entrée de la porte ET (voir le schéma de principe **page 1**) d'une part la tension v_5 issue du monostable et d'autre part la tension v_6 issue de l'horloge. On relève le chronogramme de la tension v_5 **feuille réponse N°2, partie (b), page 11**. <u>L'échelle des temps a été agrandie</u>.

- 1/ Repérer la durée propre T_i du monostable et tracer en concordance de temps, sur la feuille réponse $N^{\circ}2$, le chronogramme de v_5 .
- 2/ Définir la tension v₆ (forme, fréquence.).
- 3/ Déterminer le retard T_R ainsi que la valeur de la tension U_R.
- 4/ Tracer en concordance de temps, sur la feuille réponse $N^{\circ}2$, partie (b), page 11 le chronogramme de v_B .

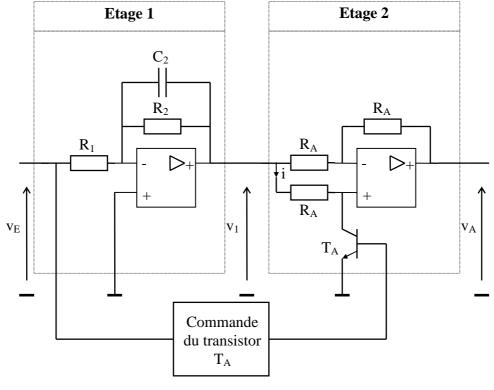
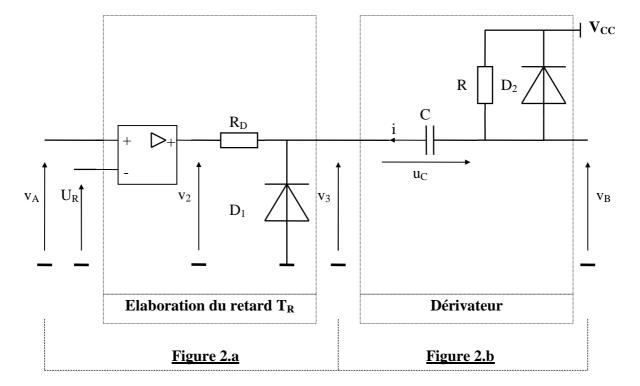



Figure 1

Page 7/11

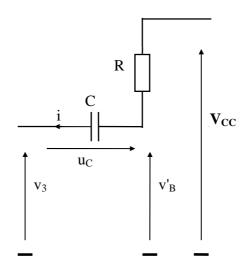


Figure 3

FORMULAIRE

• Equation différentielle : $\tau \frac{du}{dt} + u = U(\infty)$

• Solutions de la forme : $u(t) = Ae^{-\frac{t}{\tau}} + U(\infty)$

- Intervalle de temps nécessaire pour que u(t) passe de la valeur $u(t_1)$ à la valeur $u(t_2)$:

$$t_2 - t_1 = \tau.Ln \frac{U(\infty) - u(t_1)}{U(\infty) - u(t_2)}$$

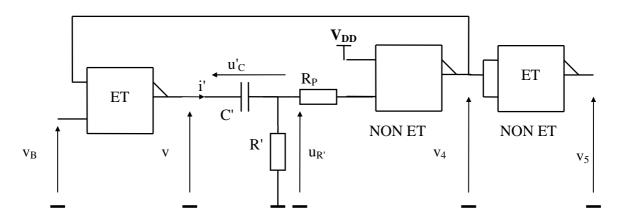
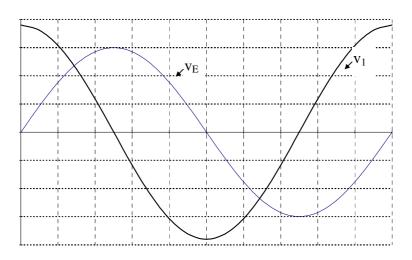
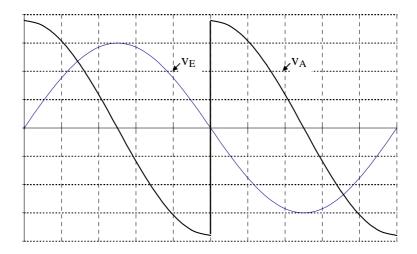
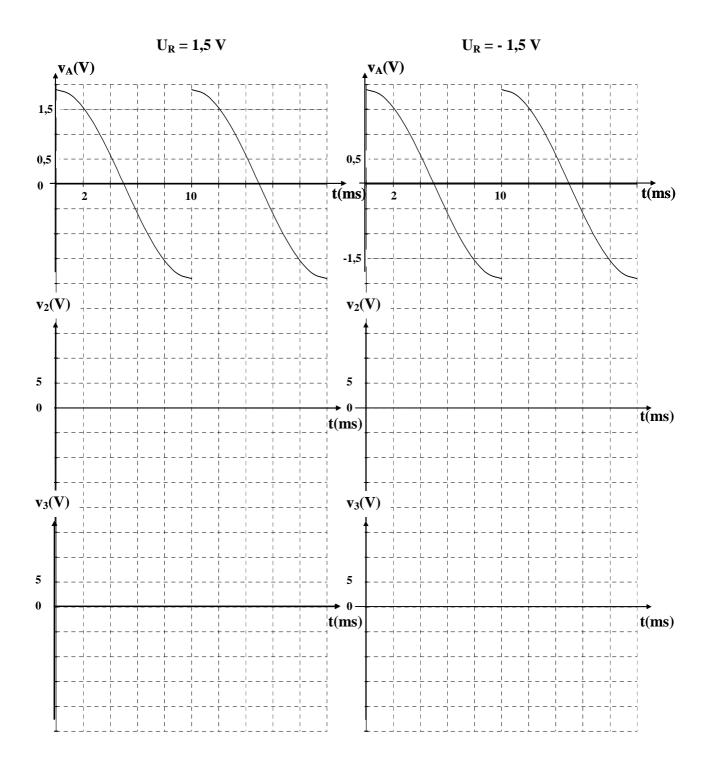
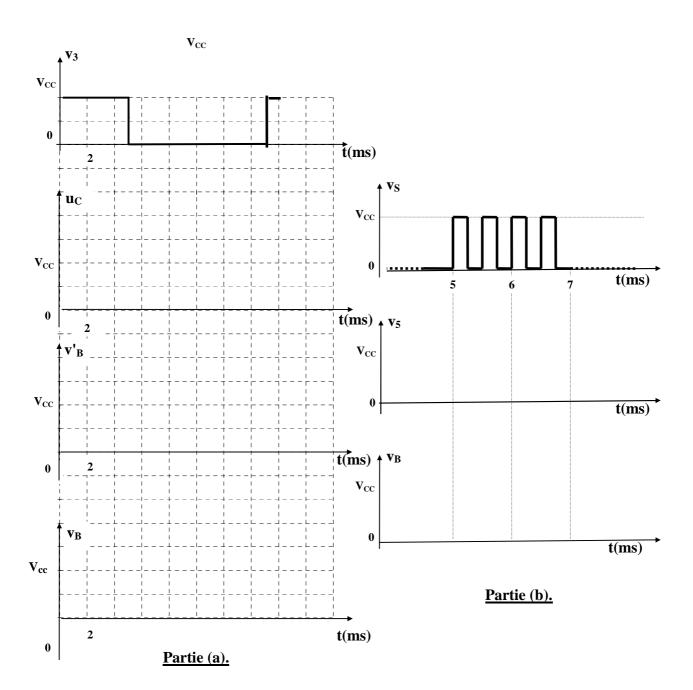




Figure 4



Oscillogramme N°1


 $\underline{Oscillogramme\ N^{\circ}2}$

Page 9/11

Feuille réponse N°1.

Page 10/11

Feuille réponse N°2.